Polynomial Factorization and Primality Criterion for Fermat Numbers

نویسندگان

چکیده

Abstract Let p be a prime integer and let k ∈N. We purpose factorization of X2k +1 (mod p) allowing ti give primality criterion for Fermat numbers. Mathematics Subject Classification 2010 11A07 11 A 51

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Public-Key Cryptography and Pepin’s Test for the Primality of Fermat Numbers

In this article, we have proved the correctness of the Public-Key Cryptography and the Pepin’s Test for the Primality of Fermat Numbers (F(n) = 22 n + 1). It is a very important result in the IDEA Cryptography that F(4) is a prime number. At first, we prepared some useful theorems. Then, we proved the correctness of the Public-Key Cryptography. Next, we defined the Order’s function and proved s...

متن کامل

Factorization of the Tenth and Eleventh Fermat Numbers

We describe the complete factorization of the tenth and eleventh Fermat numbers. The tenth Fermat number is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The eleventh Fermat number is a product of five prime factors with 6, 6, 21, 22 and 564 decimal digits. We also note a new 27-decimal digit factor of the thirteenth Fermat number. This number has four known prime facto...

متن کامل

A Necessary and Sufficient Condition for the Primality of Fermat Numbers

We examine primitive roots modulo the Fermat number Fm = 22 m + 1. We show that an odd integer n 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n. This result is extended to primitive roots modulo twice a Fermat number.

متن کامل

Mersenne and Fermat Numbers

The first seventeen even perfect numbers are therefore obtained by substituting these values of ra in the expression 2n_1(2n —1). The first twelve of the Mersenne primes have been known since 1914; the twelfth, 2127 —1, was indeed found by Lucas as early as 1876, and for the next seventy-five years was the largest known prime. More details on the history of the Mersenne numbers may be found in ...

متن کامل

Primality Test Via Quantum Factorization

We consider a probabilistic quantum implementation of a variation of the Pocklington-Lehmer N − 1 primality test using Shor’s algorithm. O(log N log logN log log logN) elementary q-bit operations are required to determine the primality of a number N , making it (asymptotically) the fastest known primality test. Thus, the potential power of quantum mechanical computers is once again revealed. PA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of mathematics and computer research

سال: 2022

ISSN: ['2320-7167']

DOI: https://doi.org/10.47191/ijmcr/v10i2.05